R&D Investment Trends and the Role of Government

Gregory Tassey

Senior Economist
National Institute of Standards and Technology

tassey@nist.gov

http://www.nist.gov/public_affairs/budget.htm

The long run is not a problem—until you get there

Steps in R&D Policy Analysis:

- (1) Demonstrate **importance** of the policy topic
- (2) Indicators of long-term underinvestment in technology
 - Low rates of productivity growth
 - Persistent trade deficits
 - Declining corporate profits
 - Low rates of innovation
- (3) Causes of underinvestment (market failure mechanisms)
 - Excessive discounting
 - Appropriability problems
 - Market structure deficiencies
 - > Inadequate infrastructure
- (4) Estimation of underinvestment in **R&D**?
 - Aggregate R&D investment trends
 - R&D investment by technology element/phase
- (5) **Policy Responses** (match policy instruments with underinvestment phenomena and required resources)

Economic Tools for Policy Analysis

Policy Issue

NIST Laboratory Funding as a Percent of Industry-Funded R&D: 1977-2002

Source: National Science Foundation; NIST Budget Office

Technology's Impact on Economic Growth

- 1) Accounts for *one-half of output (GDP) growth* in all industrialized nations (except Canada)
- 2) Accounts for three-quarters of productivity growth
- 3) Increase in U.S. productivity growth that began in the mid-1990s is *entirely due to technology* investments.
- 4) Productivity advantage of the U.S. economy over other OECD countries accounts for *three-quarters of the per capita income gap*
- 5) Rate of return to basic science is about *three times* that for applied R&D, which, in turn, has *twice* the return on physical capital

- High-Tech Sector:
 - > Electronics
 - Pharmaceuticals
 - Communication Services
 - ➤ Software and Computer-Related Services
- Accounts for 7 10 percent of GDP
- Message: The other 90+ percent of the economy is susceptible to market share erosion and decline

Geographic Concentration:

- Six states account for almost one-half of all R&D
- Ten states account for almost two-thirds of all R&D
- Message: The remaining 40 states are not a high-tech economy

Geographic Distribution of U.S. R&D Performance

State	% of Population	% of National R&D
California	12.0	20.7
Michigan	3.5	8.1
New York	6.7	6.1
Texas	7.4	5.4
Massachusetts	2.3	5.3
Pennsylvania	4.4	4.6
New Jersey	3.0	4.6
Illinois	4.4	4.2
Washington	2.1	3.6
Maryland	1.9	3.5
Total	47.7	66.1

Source: National Science Foundation

R&D Intensity: Funding as a Share of GDP, 1953-2002

Source: National Science Foundation

Major Industry Sector Shares of GDP and R&D Performance, 2000

Source: Bureau of Economic Analysis, National Science Foundation

R&D-to-Sales Trends in Manufacturing: 1983-1998

Company and Other (except Federal) R&D Funds as % of Net Sales

Source: National Science Foundation, National Patterns of R&D Resources: Early Release Tables, 2000

Bachelor's S&E Degrees in the United States and Asia: 1993-1998

Note: Asian data include China, India, Japan, South Korea, and Taiwan

How Has the "High-Tech" Economy Performed?

Long-Term Trends in Productivity and Income: 1965-2001

Source: Bureau of Labor Statistics

How Has the "High-Tech" Economy Performed?

U.S. Trade Balances for High-Tech Products and All Goods 1988-2002 (in \$billions)

Source: Census Bureau, Foreign Trade Division

How Has the "High-Tech" Economy Performed?

Domestic Corporate Profits as a Percent of GDP 1960–2002

(Before Taxes and with Inventory Valuation and Capital Consumption Adjustments)

Source: Bureau of Economic Analysis

"Black Box" Model of a Technology-Based Industry

Economic Model of a Technology-Based Industry

Source: G. Tassey, *The Economics of R&D Policy* Quorum Books, 1997, p. 70

Application of the Technology Model: Biotechnology

		Generic Techi	<u>nologies</u>	Commercial
Science Base	<u>Infratechnologies</u>	<u>Product</u>	Process	Products
 Genomics Immunology Microbiology/ virology Molecular and cellular biology Nanoscience Neuroscience Pharmacology Physiology Proteomics 	 bioinformatics biospectroscopy combinatorial chemistry DNA chemistry, sequencing, and profiling Electrophoresis Fluorescence gene expression analysis magnetic resonance spectrometry mass spectrometry nucleic acid diagnostics protein structure modeling/analysis techniques 	 antiangiogenesis antisense apoptosis bioelectronics biomaterials biosensors functional genomics gene delivery systems gene testing gene therapy gene expression systems monoclonal antibodies pharmacogenomics stem-cell tissue engineering 	 cell encapsulation cell culture DNA arrays/chips fermentation gene transfer immunoassays implantable delivery systems nucleic acid amplification recombinant DNA/genetic engineering separation technologies transgenic animals 	 coagulation inhibitors DNA probes inflammation inhibitors hormone restorations nanodevices neuroactive steroids neuro-transmitter inhibitors protease inhibitors vaccines

Transition Between Two Technology Life Cycles

Source: Gregory Tassey, The Economics of R&D Policy, Quorum Books, 1997, Chap. 7

Risk Reduction Over a Technology Life Cycle

Source: Gregory Tassey, The Economics of R&D Policy, Quorum Books, 1997, Chap. 7

Life Cycle Evolution: Generic Technology

How Important is the Composition of R&D?

Profit Differentials for Major and Minor Innovations

Source: W. Chan Kim and Renee Mauborgne, "Value Innovation: The Strategic Logic of High Growth", *Harvard Business Review*, 1997

How Important is the Composition of R&D?

Trends in U.S. R&D by Major Phase of R&D, 1991-2000

Source: National Science Foundation, National Patterns of R&D Resources, 2000

How Important is the Composition of R&D?

IRI "Sea Change" Index:
Member Firms' Annual Planned Investments

Forecast Year	Directed Basic Research	New Business Projects
1993	-26	+18
1994	-26	+18
1995	-19	+31
1996	-6	+39
1997	-26	+28
1998	-14	+24
1999	-23	+31
2000	-9	+34
2001	-21	+44
2002	-13	+30
2003	-21	+7
2004	-17	+1

Source: Industrial Research Institute's annual surveys. The Sea Change Index is calculated by subtracting the percent of respondents reporting a planned decrease in the particular category of R&D spending from the percent planning an increase of greater than 5 percent.

Life Cycle Evolution: Infratechnology

How Important Are Infratechnologies & Standards?

How Important Are Infratechnologies & Standards?

Recent Retrospective Economic Impact Studies: Outputs and Outcomes of NIST Laboratory Research

Industry/Project	Output	Outcomes	Measure
Chemicals: Standards for sulfur in fossil fuels (2000)	Measurement methodsReference materials	Increase R&D EfficiencyIncrease productivityReduce transaction costs	IRR: 1,056% BCR: 113 NPV: \$409M
Semiconductors: Josephson volt standard (2001)	Measurement methodsReference materials	Increase R&D efficiencyEnable new markets	IRR: 877% BCR: 5 NPV: \$42M
Communications: Data encryption standard (2001)	Standard (DES)Conformance test methods	Accelerate new marketsIncrease R&D efficiency	IRR: 270% BCR: 58–145 NPV: \$345M–\$1.2B
Communications: Role- based access control (2001)	Generic technologyReference models	Enable new marketsIncrease R&D efficiency	IRR: 29-44% BCR: 43-99 NPV: \$59-138M
Energy: Gas mixture standard for regulatory compliance (2002)	Standard (NTRM)	Increase productivityReduce transaction costs	IRR: 221–228% BCR: 21–27 NPV: \$49–63M
<i>Manufacturing:</i> Product design data standard (2002)	Standard (STEP)Conformance test methods/facilities	Increase R&D efficiencyReduce transaction costs	IRR: 32% BCR: 8 NPV: \$180M

Microeconomic Analysis for Strategic Planning

Recent Prospective Economic Studies of
Costs due to Inadequate Technology Infrastructure

costs due to inadequate Technology initiati detaile				
			Estimated	
Focus of Study	Industries Covered	Infrastructure Studied	Annual Costs	
Interoperability	Automotive supply chain	Product design data exchange	\$1 billion	
costs (1999)				
Deregulation	Electric utilities	Metering	\$3.1–\$6.5 billion	
(2000)		• Systems monitoring/control		
Software testing	• Transportation equipment	All stages of the testing cycle	\$60 billion	
(2002)	 Financial services 			
Interoperability	Transportation equipment	Business data exchange:		
costs (in	• Electronics supply chains	demand, production, inventory,		
progress)		procurement, & distribution		
Medical testing	• Laboratories (calcium)	Quality of measurement	\$0.4–\$1.3 billion	
(in progress)		assurance		
Service sector	Telecommunications	R&D classifications		
R&D (in	Software	 Manufacturing interface 		
progress)	Financial			
	• RD&T			

Microeconomic Analysis for Strategic Planning

Costs of Inadequate Software Testing Infrastructure

Industry Coverage	Annual Cost	Potential Economic Benefits
Transportation Equipment and Financial Services	\$5.85 B	\$2.10 B
U.S. Economy	\$59.5 B	\$22.2 B

Source: RTI International, *The Economic Impacts of Inadequate Infrastructure for Software Testing* (NIST Planning Report 02-3)

Technology-Based Policy Options

R&D Policy Options

If the R&D investment problem is

- "Inadequate science base":
 - Fund basic research at adequate scope and depth
- "Inadequate amount of R&D"
 - ➤ Provide tax incentives (e.g., R&E tax credit) sufficient to raise expected rates of return above corporate hurdles
- "Distorted composition of R&D"
 - Co-fund generic technology research (e.g., DARPA/ATP model) to create attractive "real options" for portfolio of emerging technologies with economic growth potential

R&D Policy Options

How much R&D?

- If all manufacturing industries invested at the same rate as the high-tech segment, this sector's R&D would increase from \$130B to roughly \$400B
- If the Federal Government spent as much on *all areas of science combined* as it did just on health research in FY03, its R&D budget would have been roughly \$4B larger
- Several economic studies (Griliches; Jones and Williams) indicate that national R&D should be increased by a factor of between two and four
- If NIST lab funding was at same proportion of industry-funded R&D in 2002 as 25 years earlier, budget would have been \$677 million (roughly double)

R&D Policy Options

"Sooner or later, we sit down to a banquet of consequences"

Robert Louis Stevenson